

Namecoin as a Decentralized Alternative
to Certificate Authorities for TLS

Jeremy Rand
Lead Application Engineer, The Namecoin Project

https://www.namecoin.org/

OpenPGP: 5174 0B7C 732D 572A 3140 4010 6605 55E1 F8F7 BF85

Presented at Grayhat 2020 Monero Village

A brief introduction to Namecoin

● Like the DNS, but secured by a blockchain.
● Uses the “.bit” top-level domain (TLD).
● Names are represented by special coins.
● First project forked from Bitcoin (in 2011; Bitcoin was created in

2009).
● Original focus of developers was on censorship-resistance.

– We later became interested in PKI use cases (e.g. for TLS) as well.

The Threat of Certificate Authorities
(CA’s) in TLS: Censoring Content

● CA’s can censor websites by revoking their certificates.
● Censorship of scientific knowledge: Comodo revoked the certificate of Sci-Hub in

order to comply with a copyright enforcement court order obtained by research
paywall vampires (American Chemical Society).

● Geopolitical censorship: Let’s Encrypt revoked the certificates of all entities
residing in the People’s Republic of Donetsk in order to comply with OFAC
sanctions.

● Censorship of journalism: Let’s Encrypt revoked the certificate of the (allegedly
Russian-funded) media outlet USA Really in retaliation for the site “posting content
focused on divisive political issues” and “attempting to hold a political rally”.

The Threat of Certificate Authorities
(CA’s) in TLS: Intercepting Traffic

● TLS trusts over 1000 certificate authorities.
● CA’s get compromised, enabling man-in-the-middle (MITM) attacks.

– DigiNotar was allegedly compromised by Iranian intelligence.

● CA’s don’t perform due diligence.
– WoSign handed out a TLS certificate for github.com to a random guy

because… he proved he had an account on GitHub.

● CA’s achieve Too Big To Fail status.
– StartCom (AKA the CA version of Martin Shkreli) held large parts of the

Internet for ransom during the Heartbleed incident; they were never punished.

These two threats have an inverse correlation.

● Too many CA’s? Easy to find one who can be compromised.
Vulnerable to MITM.

● Not enough CA’s? Hard to find one who will do business with
you. Vulnerable to censorship.

DNSSEC / DANE

● The DNS community long ago realized that a secure version of DNS
could be used instead of CA’s.
– Website owner puts a TLS certificate fingerprint in their DNS record.

– End user’s browser makes sure that the certificate matches the fingerprint from
DNS.

– Standardized by IETF as DANE.

– If we assume that the DNS is secure (e.g. via DNSSEC), this should be secure.

● We don't trust the DNS, but maybe we do trust Namecoin to do what the
DNS is supposed to do.

Adapting DANE to Namecoin?

● Since Namecoin is interoperable with DNS, we can put TLS
certificate fingerprints in Namecoin according to the DANE
spec.

● A Namecoin-DNS bridge (running on localhost) signs the
records with a bridge-generated DNSSEC key.

● User configures Unbound to use the bridge’s DNSSEC key for
the .bit zone.

● Should be as simple as that, right?

Web browsers don’t support DANE

● No major web browsers do DNS lookups for DANE records.
● Some browsers briefly experimented with stapling of DANE

records in the TLS handshake.
– Useless for Namecoin, since for Namecoin the DNSSEC trust root is

different per user.

– Useless for preventing MITM’s, since this only expands the set of
accepted certificates.

● Chromium and Firefox devs have rejected DANE (even the
stapled variant).

Design goals for Namecoin TLS interoperability

● Support “positive overrides”: a
certificate that matches the
Namecoin blockchain must be
accepted. (Prevents censorship.)

● Support “negative overrides”: a
certificate that doesn’t match the
Namecoin blockchain must be
rejected. (Prevents MITM.)

● Interoperable with standard,
unpatched TLS implementations.
(We don’t want to fork Firefox.)

● Low attack surface. (Intercepting
proxies are not okay; we want to re-
implement as little TLS logic as
possible. Preferably sandboxable.)

● Minimal on-chain data size.
(Blockchains don’t scale well; we
don’t want to make this worse.)

● Restricting to special certificate
forms is okay if it helps us achieve
these goals. (It’s okay to not support
the entire DANE specification.)

Existing (Non-)Solutions

● Intercepting / MITM proxy?
– Re-implements entire TLS

protocol.

– Tends to break client certs
and cert pinning.

– Way too much attack surface.

– Remember Lenovo
SuperFish?

● Shared library hooking
(LD_PRELOAD)?
– Re-implements entire

certificate verifier.

– Unstable C structures; might
corrupt memory if a library
gets upgraded.

– Better, but still too much
attack surface.

Could a browser extension work?

● Nope.
● All major browsers removed

the needed API’s years ago.
● Due to concerns about

malware abusing the API’s.

● Even the old API’s would
often leak login cookies.

● Chromium and Firefox devs
have actively refused to
support our use case when
we asked.

Targeted TLS Implementations

● Microsoft CryptoAPI
– Used in most Windows software.

● Mozilla NSS
– Used in Firefox (cross-platform).

– Used in a lot of GNU/Linux software (e.g. Chromium).

Positive Overrides in Microsoft CryptoAPI

● If you manually add a self-signed website certificate to the
CryptoAPI root CA store, it will be accepted in any subsequent
TLS handshakes.

● But this is a horrible idea for many reasons.
– What if the certificate is also valid as a CA? Now it can impersonate

other websites!

– What if the certificate has multiple hostnames? Ditto!

– Requires us to know the full certificate contents before we start the
TLS handshake. Violates “Minimal on-chain data size” design goal.

● <ryan-c> how small can we actually make a self-signed ecdsa cert?
● <Jeremy_Rand>Probably not small enough to fit in a Namecoin name
● <ryan-c> maybe not
● <ryan-c> er maybe it is
● <ryan-c> one sec
● <ryan-c> let me do some wizarding
● * Jeremy_Rand loves it when ryan-c puts on his wizard hat
● <ryan-c> Jeremy_Rand: the cert may too big, but we should consider

cheating
● <ryan-c> Jeremy_Rand: yes, we can fit a self-signed ecdsa cert by

cheating

Dehydrated Certificates

● Ryan's solution: starting with only a public key, validity period,
signature, and hostname (called a dehydrated certificate), you
can deterministically construct a valid certificate by filling a
template (rehydrating the certificate).
– Pubkey, validity period, and signature go in the Namecoin value.

– Hostname determined by what Namecoin name is being looked up.

– Use ECDSA instead of RSA – much smaller keys and signatures.

Efficiency Advantages of Dehydrated Certificates

● In theory: 104 bytes per certificate.
● In practice: 255 bytes.

– Due to JSON/base64 encoding, no compressed pubkeys, other
compromises.

● Before dehydration: 464 bytes binary, 620 bytes base64.
● A Namecoin name can hold 520 bytes (which also needs to

include IP addresses and other DNS records).

Security Advantage of Dehydrated Certificates

● All of the potentially dangerous X.509 fields (e.g. the CA bit) are controlled by
the template, not the attacker.

● The only fields the attacker controls are the public key, the validity period,
and the signature.
– Attacker-controlled public keys are already standard in the TLS ecosystem – clearly

safe.

– Validity period's only potentially harmful effect is disincentivizing key rotation – only
impacts the hostname who chose that validity period.

– The signature check normally passes, and the only thing an attacker-controlled
signature can change is making the signature check not pass – doesn't accomplish
anything useful attack-wise.

Rehydrating and injecting via DNS hook

● When a DNS request for a Namecoin domain name is received
by the Namecoin-DNS bridge on localhost, the dehydrated
certificate is rehydrated into DER format, and injected into the
CryptoAPI root CA store.

● Once injection has happened, the Namecoin-DNS bridge
replies with the IP address, and the connection proceeds as
usual.

Sandboxing

● The standard Windows API’s for adding trusted certificates require
Administrator privileges.

● But, the certificate store actually lives inside the Windows Registry.
● The Registry has an ACL permission scheme, just like the filesystem.
● So we create a sandboxed service user, and grant it write privileges to

the specific Registry key that contains the root CA store.
● Run the Namecoin-DNS bridge under this account, and it can now add

trusted certificates via standard Registry API’s, without any other
privileges.

Demo of Positive Overrides
in Microsoft CryptoAPI

Positive Overrides in Mozilla NSS

● NSS doesn't always honor self-signed website certificates from
NSS's trust store.
– The Mozilla people believe that supporting this would be a footgun.

– So we need to find another approach.

Name Constraints

● Name constraints restrict the set of domain names that a TLS CA can issue
certs for.

● Supported by virtually all TLS implementations.
– Last major stragglers were Apple (implemented in 2018), Java (still not supported

as of 2017), and Node.js (still not supported as of 2017).

● In theory: you can buy a name-constrained CA from a public CA, and then
you can issue as many certs as you want within your domain name without
bothering the public CA.
– Not used in practice because of regulatory capture.

– Public CA’s would rather make you pay for multiple certs.

Real-World Usage of Name Constraints

● A corporate intranet CA can
be constrained to only issue
certs within a corporate
intranet TLD.
– Used by Netflix’s intranet

CA’s.

● Public CA’s can be
constrained to never issue
certs for TLD’s with unusual
regulatory requirements.
– Used by Let’s Encrypt to

blacklist the .mil TLD.

Storing Name-Constrained CA's
in the Blockchain

● We can construct a name-constrained intermediate CA from a
public key + domain name.

● Validity period and signature don’t need to be deterministic, so we
can omit them from the blockchain and generate them locally.

● The name constraints RFC says that name constraints are
ignored for root CA's.
– No idea if implementations follow the spec on this, but doesn’t affect us

since we sign the blockchain’s name-constrained CA with a locally
generated root CA.

Efficiency Advantages of
Name-Constrained Certificates

● In theory: 34 bytes per certificate.
● In practice: 134 bytes.

– Due to JSON/base64 encoding, no compressed pubkeys, other
compromises.

● For comparison: dehydrated was: 104 bytes in theory,
255 bytes in practice.

● A Namecoin name can hold 520 bytes. This easily fits with
room to spare.

Name-Constrained Certificates are Layer 2

● The blockchain only commits to the name-constrained CA’s
public key.

● You can issue new website certificates with that CA (using new
keys) as often as you like.

● This doesn’t require updating the blockchain.
● You can have scalability and key hygiene.

Should we inject via DNS hook
for Mozilla NSS?

● We could inject the name-constrained CA’s into the NSS
certificate store.

● But… there are some issues with that.
– NSS’s cert store uses sqlite. Very slow to inject.

– Leaves your browsing history in the NSS cert store. Privacy issue.

– Tor Browser disables the sqlite cert store completely.

– Confuses key pinning (sqlite-stored certs get privileges to bypass key
pins). Attack surface we don’t want.

How does Mozilla NSS’s
cert store actually work?

● The NSS sqlite-based cert store is actually a PKCS#11 module
called Softoken.
– Yes, this is the spec that’s usually used by HSM’s.

● So we wrote our own PKCS#11 module that feeds NSS the
name-constrained CA certs from Namecoin, without the
Softoken/sqlite middleman.

● It’s called ncp11. Written in Go.
– We also made a Go library for writing your own PKCS#11 modules.

Sandboxing

● The name-constrained CA’s from the blockchain can be signed with
a root CA that has its own name constraint… restricting it to only
Namecoin domains.

● The root CA can be imported as a trust anchor separately from
ncp11.

● NSS can then be configured to use ncp11 only to look up
intermediate certs, not root CA’s.

● Result: Any exploit of ncp11 stays confined to Namecoin domains; it
can’t harm DNS-based domains.

Name-Constrained Blockchain CA’s
with Microsoft CryptoAPI

● We plan to port the name-constrained CA design back to
CryptoAPI.
– Stay tuned for progress on this.

● The Windows Registry sandboxing and NSS intermediate-only
sandboxing tricks can be combined.
– The Windows Registry uses separate Registry keys for the Root store

and the Intermediate store.

– So we can inject name-constrained intermediate CA’s to the Registry,
and any exploit against Namecoin can’t metastasize to DNS domains.

Negative Overrides in Mozilla NSS

● We experimented with using key pinning.
– Pin the local Namecoin root CA for the .bit TLD.

– Alas, key pinning API’s are being phased out by major browsers.

● Is there another way to prevent all public CA’s from issuing .bit
certs?
– We could politely ask them to put a name constraint in their cert, like

Let’s Encrypt did for .mil.

– But… they’d probably say no.

Rewriting the Public CA’s’ Certificates

● We don’t actually need the public CA’s’ permission to add a
name constraint to their certs.

● We can simply convert their root CA certs to intermediate CA
certs, and sign them with a locally generated CA that blacklists
the .bit TLD.

● This is actually something that CA’s do for each other all the
time, it’s called cross-signing.

Adding Cross-Signing to ncp11

● The list of built-in NSS trusted certificates is… you guessed it,
another PKCS#11 module (called “CKBI”).

● So we rigged ncp11 to act as a PKCS#11 proxy to CKBI.
● ncp11 cross-signs all of CKBI’s certificates to add a name

constraint blacklisting the .bit TLD.
● It also marks the original CKBI certificates as “prohibited”.
● Result: built-in root CA’s cannot sign .bit certificates.

Negative Overrides in Microsoft CryptoAPI

● Cross-signing as a negative override mechanism has some
unpleasant side effects.

● It converts root CA’s to intermediate CA’s, and changes their
fingerprints.

● This breaks some assumptions by (poorly designed) software.
– Extended Validation certificates can break.

– So can certificate pinning.

● But there is a better way in CryptoAPI.

Certificate Properties in Microsoft CryptoAPI

● CryptoAPI, like NSS, stores a bunch of metadata for each
certificate.

● In CryptoAPI, the metadata is in the form of “Properties”.
– Stored in the Windows Registry, along with the cert itself.

● Hmm… the wincrypt.h file in Windows has a #define called
CERT_ROOT_PROGRAM_NAME_CONSTRAINTS_PROP_ID.

● Zero hits for this #define on DuckDuckGo, other than the header
file itself, and a Microsoft docs page that just says “Reserved.”

Undocumented Windows CryptoAPI Feature:
External Name Constraints

● Some experimentation revealed that if you set this Property’s
value to an ASN.1-encoded X.509 name constraints extension,
the name constraint will be applied to the corresponding root CA.

● The Property name (“ROOT_PROGRAM”) insinuates that
Microsoft intended to use it for their root CA list.
– According to Wine’s Git history, it was added to Windows before 2007.

● But Microsoft apparently never used it for anything.

Injecting Name Constraints
to the Windows Registry

● Remember our positive override tool that injects certificates to
the Windows Registry based on a DNS hook?

● We’ve extended that codebase to support injecting the name
constraints Property into all of the Registry keys that store the
built-in CryptoAPI CA’s.

● Result: all of the default CA’s in the CryptoAPI root CA store
cannot issue .bit certs.

But there’s a catch!

● Most of the root CA’s that CryptoAPI trusts aren’t in the root
CA store!

● Microsoft ships a “certificate trust list” (AuthRoot.stl) as part of
Windows Update, which contains hashes of all the trusted root
CA’s (currently 420 root CA’s).

● At most 24 of them are actually included in the root CA store
shipped with a default Windows install.

Where are the other 396 certs, then?

● When CryptoAPI verifies a certificate, it downloads and installs any
needed root CA’s listed in AuthRoot.stl from Windows Update on
the fly.
– Supposedly this is a performance optimization.

– Seems dubious, since it actually adds network latency.

● So we can’t apply a name constraint Property to all the trusted root
CA’s, because they don’t exist in the Registry until they’re actually
used to verify something.

● How can we work around this?

Pre-Downloading All the AuthRoot.stl Certificates

● There’s a Windows certutil command that fetches all the
AuthRoot.stl certificates and saves them as .crt files.
– Intended for enterprise environments where IT needs to vet each CA.

● If you then ask certutil to “verify” each of those .crt files, this
triggers the code path in CryptoAPI that imports the certs from
Windows Update in order to verify them.

● Result: all 420 root CA’s end up in the Windows Registry.
– And now we can apply the name constraint Property.

Sandboxing

● Note that importing all 420 root CA’s can be done by a
sandboxed user with no interesting privileges.

● Because all we’re doing is asking CryptoAPI to verify
certificates.
– This is an unprivileged operation, naturally.

● CryptoAPI does all the importing of certificates to the Registry
for us.

An Even Simpler Way

● There’s a “Verify Certificate Trust List” command in Windows
certutil, which downloads all the root CA’s, and verifies them for
us, in a single step.

● We’ve integrated all of this into the Namecoin Windows installer.
● When you install Namecoin, the installer makes certutil import

all 420 root CA’s, and sets a name constraint on all of them.

Demo of Negative Overrides
in Microsoft CryptoAPI

So, What Have We Achieved?

● Positive certificate overrides (censorship-resistant TLS).
● Negative certificate overrides (interception-resistant TLS).
● Works with Microsoft CryptoAPI (most Windows applications).
● Works with Mozilla NSS (Firefox and most GNU/Linux

applications).
● Minimal attack surface (sandboxing-friendly).
● Minimal blockchain storage usage (uses Layer 2).

Credits

● R&D and coding by:
– Jeremy Rand (me)

– Hugo Landau

– Aerth

– Ryan Castellucci

● Funded by NLnet Foundation’s Internet Hardening Fund.
– Funding sourced from the Netherlands Ministry of Economic Affairs.

Contact Me At...

● https://www.namecoin.org/

● OpenPGP:
5174 0B7C 732D 572A 3140
4010 6605 55E1 F8F7 BF85

● jeremy@namecoin.org

● Questions? Ask me on
#namecoin on Freenode
IRC.

● Thanks to the Monero Village
for inviting me here!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

